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The perturbed two-dimensional oscillator 
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Department of Physics, The University of Hull, Hull HU6 7RX, U K  

Received 1 July 19’35 

Abstract. A renormalised version of inner product theory is used to give accurate energies 
for six states of a perturbed two-dimensional oscillator and to obtain the Rayleigh- 
Schrodinger energy perturbation series. 

1. Introduction 

The inner product method of eigenvalue calculation investigated by Blankenbecler er 
a1 (1980) was recently extended by Killingbeck et a/ (1985) and applied to several 
one-dimensional problems. In the latter work it was stated that the perturbation theory 
based on the inner product approach is valid only for ground states. We have since 
established that the method can be modified quite easily to apply to excited states and 
to problems in more than one dimension. This paper is intended to point out the 
flexibility of the inner product perturbation theory, which gives it an advantage over 
the hypervirial method (Killingbeck 1981) and the method of Bender and Wu (1969). 
The particular example which we consider is that of the Schrodinger equation with a 
Hamiltonian of the perturbed oscillator form -V2 + x 2  + y 2  + V ( x ,  y ) ,  with 

V ( x ,  y )  = A [ A ( x 4 + y 4 ) +  B x 2 y 2 ] .  

The potential is non-separable but shows a high symmetry; this cuts down the amount 
of computation required, although the more general anisotropic case can also be treated 
by the method. Since the energy perturbation series is expected to be divergent, we 
start by introducing a renormalisation parameter p (Killingbeck 1981) and write the 
potential in the form 

p 2 ( x Z  + y 2 )  + A [ V(X, y )  - p ( x 2 +  y 2 ) ] .  (1.2) 

We set p2 = 1 +AB, so that the total potential is invariant but the portion of it used as 
the perturbation varies with p. The use of a variable p is helpful in improving 
convergence in the hypervirial approach and would also improve convergence in those 
techniques which involve matrix diagonalisation (Hioe et a1 1978, h l l e n  and Edmonds 
1981). The present approach does not require the matrix elements of V ( x ,  y )  in any 
basis, but is based on a recurrence relation which can be handled by a simple computer 
program. We should emphasise again a point made previously (Killingbeck 1981); 
direct use of the p parameter is computationally preferable to the alternative route 
(Caswell 1979) of first obtaining the traditional ( p  = 0) series and then transforming 
it. The divergence of the series means that the latter approach often needs double 
precision arithmetic to get single precision results. 
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2. The recurrence relation and its use 

The inner product approach uses a reference function 

4 = xplyp2 exp[-(p/2)(x2+y2)] 

with p having the same numerical value as in (1.2) and with the x and y parity indices 
PI and P2 equal to 0 (even) or 1 (odd). The inner products 

S ( M ,  N )  = ( 4 I X Z M Y ”  14) ( 2 . 2 )  
play a key role in the method. Here + is a solution of the Schrodinger equation 
- V 2 $ +  V+ = E$, with V written as in equation (1.2). The first step is to work out the 
quantity 

E S ( M ,  N )  = (&Yx’”y”JI$) (2.3) 
by acting with the Hamiltonian H = - V 2 +  V on the triple product to the right of it. 
The resulting collection of terms produces a recurrence relation between the S ( M ,  N )  
which we do not write down here, since it is visible in (2.6) below. The second step 
is to substitute the perturbation expansions 

S ( M ,  N )  =c S ( M ,  N, K ) h K ,  (2.4) 

E = C  E ( K ) A ~ ,  ( 2 . 5 )  
into the S ( M ,  N )  recurrence relation. The result is the new recurrence relation 
K 
C E ( P ) S ( M , N ,  K - P ) = A S ( M + 2 , N , K - l ) + A S ( M , N + 2 ,  K-1) 
1 

+ B S ( M +  1, N +  1, K - 1) - P S ( M +  1, N, K - 1) 

- p S ( M ,  N+1, K-1)+4p[M+N-Sl-S2]S(M, N, K )  
-2M(2M+2Pl-l)S(M-1, N, K )  

-2N(2N+2P,-l)S(M, N-1, K) .  (2.6) 
In writing (2.6) we have moved one term E ( 0 )  S ( M ,  N, K )  from the sum over P to 
the right of the equation and have adopted the convention that the unperturbed energy 
is expressed in the form 

E ( 0 )  = p(  2 + 2Pl+ 2P2 + 4S1+ 4S2). (2.7) 
Choosing the x and y parity indices PI and P2 (0 or 1) and the x and y state numbers 
SI and S2 (0, 1,2, . . . ) then specifies which particular state is being treated. If PI = P2 
we can further specify an x-y  interchange symmetry index P3 (0 or 1)  such that 

( 2 . 8 )  
The initial condition imposed on the S ( N ,  M, K )  if PI = P2 is 

(2.9) 
and the recurrence relation (2.6) is then used as follows. If the energy sum up to 
E(Q)AQ is required, then the indices have the ranges set out below if PI = P2 (with 
the convention SI 

S ( N ,  M, K)=(- i )%(M, N, K) .  

s(s,, s2, 0) = (-1)‘3s(s2, sl, 0) = 1 

S2 on the state labels): 
K =0,1,2,. .., Q, 

(fixed K )  N=0,1 ,2 , .  . . ,S2+2Q-2K, 

(fixed K, N) M = 0,1,. . . , N - P3. 

(2.10) 
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The indices are scanned in the order given above and  the relation (2.6) is used to work 
out S (  M,  N, K )  in terms of other elements which are already known. S( N, M,  K )  is 
then filled in from the symmetry relation (2.8). For the special cases in which M = S, 
and N = S2 the relation (2.6) is used differently. The sum on the left-hand side becomes 
E ( K ) ,  because of the intermediate normalisation convention S ( S , ,  S,) = 1 which we 
impose on the algorithm. This gives the value of the energy coefficient E (  K )  in terms 
of already calculated elements of the S array. The sum of the energy perturbation 
series can then be calculated term by term, and  p is varied to give the best possible 
semi-convergence of the sequence of partial sums. 

3. Results and checking calculations 

The algorithm outlined in § 4 was implemented on a Sinclair Spectrum microcomputer 
and several checks were devised to verify that it was giving correct energy eigenvalues. 
A few relevant energies are available in the literature (Hioe er a1 1978, Ari and Demiralp 
1985). We obtained agreement with them, but found it better to devise more general 
checks. First, we set up  a simplified version of the method for the one-dimensional 
perturbed oscillator and  confirmed that varying the parameters PI and SI correctly 
gave the perturbation series for several excited states, with the hypervirial method 
(Killingbeck 1981) as the reference standard. Second, for the special cases ( A  = 1, B = 
0) and ( A  = 1, B = 2) we checked the energies obtained using (2.6) against results for 
the potential r2 + Ar4 in one dimension ( A  = 1, B = 0) and  two dimensions ( A  = 1, B = 2). 
The test energies were obtained very easily from a power series method of the kind 
described by Killingbeck (1985a). Table 1 shows the results of the calibratory calcula- 
tion at A = 0.1. The states are labelled by giving the x and y oscillator quantum numbers 
(0 ,1 ,2 , .  . . ) and the parity label e(even) or  o(odd) for the x - y  interchange symmetry. 
The first two columns of table 1 show how the numerical results give the correct 
degeneracies required by the high symmetry of the potential. 

Table 1. Energies at A =0.1 (order 10 throughout). (The results in the first two columns 
were checked by the series method.) 

A = l , B = O  A = l , B = 2  A=O, E =  1 
State ( P  = 10) ( P  = 10) ( P  = 3) 

( O , O ,  e)  2.1305710 2.168 5972 ( m  =0) 2.024 1383 
((42, e) 6.813 2448 7.039 7076 ( m  = 0) 6.159 2858 
(0 ,2 ,0)  6.813 2448 6.908 3321 ( m  = *2) 6.071 6400 
( 1 , L  e)  6.613 7440 6.908 3321 ( m  = 1 2 )  6.208 2008 
(1,3,  e)  11.659 550 12.415 256 ( m  = 1 2 )  10.588 282 
(1 ,3 ,0)  11.659550 12.084472 ( m = * 4 )  10.343900 

For the case of the perturbing potential Ax2y2 (i.e. A = 0, B = 1) table 2 shows some 
of the E ( K )  coefficients for three states. The three series are all alternating ones, but 
have E ( K )  values with different orders of magnitude. Table 3 compares the ground 
state energies obtained by three methods. 

(a) The present inner product perturbation calculation. 
(b) The adiabatic approximation. The energies are those for the effective Hamil- 

tonian -D2  + x2 + [( 1 +  AX^)]"^, since the ground state energy of the potential y 2  + Ax2y2 
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Table 2. Energy coefficients at P = 0. 

K ( O , O ,  e)  (0,2, e)  (0,290) 

0 2 6 6 
1 0.25 1.75 0.75 
2 -0.09375 -1.875 -0.375 
3 0.085 937 5 3.824 218 8 0.457 031 25 
4 -0,11877441 -10.355 713 -0.816 650 39 
5 0.213 490 8 33.578 262 1.846 176 1 
6 -0.466 409 58 -124.042 91 -4.947 429 
7 1.192 6603 507.602 07 15.174 457 
8 -3.4855692 -2 260.761 2 -52.143 241 
9 11.451354 10 834.694 197.915 20 

10 -41.775.356 -55 439.400 -821.447 78 
~~ 

Table 3. Ground state energy estimates ( V = Ax’y’).  

A Adiabatic Perturbation Axial 

0.1 2.023 8954 2.024 1383 2.024 3369 
0.2 2.045 9819 2.046 7957 2.047 4847 
0.3 2.066 6736 2.068 2421 2.069 6098 
0.4 2.086 2276 2.088 6677 2.090 8404 
0.5 2.104 8347 2.108 2138 2.1 11 2784 
0.6 2.122 6257 2.1269899 2.131 0065 

with x frozen is given by the square root term. A finite difference method was used 
to calculate the eigenvalues. 

(c) An axial approximation, analogous to the spherical approximation used for 
the quadratic Zeeman effect (Killingbeck 1979). In two dimensions the identity 

8x2y2 = r4+  (6x2y2 - x4 - y4) (3 .1)  

involves two terms. The first is a tensor operator with m = 0 (axial symmetry); the 
second is a sum of tensor operators with m = *4, and will only affect the rn = 0 ground 

Table 4. Some energy values at order 40. V = Ax’y’. 

Semi-converged energy 
A, P State (with Aitken extrapolation) 

0.1,2 
0.1,2 
0.1,2 
0.5, 2 
0.5, 3 
0.5, 2 
1 , 3  

193 
1 , 3  

(O,O,  e)  
(0 ,2 ,  e )  
(0 ,2 ,0)  
( O , O ,  e)  
(0,2, e) 
( 0 , 2 , 0 )  6.313 168 654 
(O ,O,  e)  2.195 918 085 
(0,2, e)  7.031 272 34 
( 0 , 2 , 0 )  6.557 803 33 

2.024 138 321 415 612 724 5 
6.159 285 750 751 598 
6.071 640 017 418 102 530 
2.108 213 779 70 
6.623 323 980 2 
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state energy in second and higher orders of perturbation theory. The axial approxima- 
tion represents the potential r2+Ax2y2 by r2+ihr4 ,  which can be treated by power 
series methods (Killingbeck 1985a). The results of table 3 confirm what would be 
expected on mathematical grounds, namely that the energies from methods (b) and 
(c) straddle the true energy. By taking energy differences (Killingbeck 1985a, b) it is 
possible to evaluate ( x 2 y 2 )  at A =0.5. The values obtained (0.1818, 0.1914, 0.2007) 
show the same ordering as the energy values. Table 4 shows a few energies calculated 
to higher accuracy. 

4. State labels and degeneracy 

The state indices SI and S2 of 0 2 were chosen to simplify the recurrence relation (2.6); 
we can indicate how they are related to the indices used in table 1 by looking at the 
examples (0,2, e) and (0,2,0).  We have PI = Pz = 0 (even parity) and also SI = 0 
(ground x state) and Sz= 1 (first excited y state); these values give the correct E ( 0 )  
in (2.7). Further, the unperturbed function will have S ( O , O ) = O  because of the 
orthogonality properties of harmonic oscillator functions, but will have S (0 , l )  # 0. To 
make S(0 , l )  equal 1 we set S(O,l, 0) = 1 and S(0, 1, K )  = 0 for K > 0, with P3 = kl 
in the algorithm to give the e or o state. The later S ( M ,  N, K )  are then proportional 
to S(0 ,  1 , O )  and so give E ( K )  coefficients which are independent of the fixed S (0 , l )  
value. The S( M, N, 0) with M < SI and N < S2 are zero, but those with M 2 SI and 
N 2 S2 are not. The six states of table 1 can all be treated with these simple initial 
conditions, as can the state (0, 1) of mixed parity, for which all the S ( M ,  N, K )  have 
to be evaluated using (6), since S( N, M,  K )  and S( M,  N, K )  are not simply related. 
For higher states degeneracy problems arise. For example (1,2) and (3,O) are initially 
degenerate and linked by the potential, so the appropriate zeroth-order ratio of S(0, 1, 0) 
and S( 1,0,0) has to be used in the initial conditions. However, with S, + S2 = 1, M = 1, 
N = 1, PI = 1, P2 = 0, K = 0 in (2.6) we find S(l,O, 0) in terms of S(0, 1, 0) and can 
still set S(0, 1,O) = 1 by convention. The states with PI # P2 stick together in pairs, 
whereas the states with P,  = Pz show interesting splitting effects as A and B vary. The 
preliminary results reported here clearly illustrate the value of combining the renormali- 
sation (variable p )  technique with the inner product perturbation approach; the 
extensions of the method to treat the Henon-Heiles perturbation A ( x y 2 - ; x 3 )  and the 
three-dimensional perturbed oscillator are now under investigation. 
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